1248 METHYL 10-ETHYLDICYCLOHEPTA[cd,gh]PENTALENE-5-CARBOXYLATE

References

- ANDERSON, A. G., MACDONALD, A. A. & MONTANA, A. F. (1968). J. Am. Chem. Soc. 90, 2993–2994.
- DESTRO, R., PILATI, T. & SIMONETTA, M. (1980). Tetrahedron, 36, 3301–3304.
- FUJIMORI, K., MORITA, N., YASUNAMI, M., ASAO, T. & TAKASE, K. (1983). Tetrahedron Lett. 24, 781–784.
- HAFNER, K., FLEISCHER, R. & FRITZ, K. (1965). Angew. Chem. 77, 42; Angew. Chem. Int. Ed. Engl. 4, 69-70.
- International Tables for X-ray Crystallography (1974). Vol. IV, p. 149. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- JUTZ, C. & SCHWEIGER, E. (1971). Angew. Chem. 83, 886; Angew. Chem. Int. Ed. Engl. 10, 808.

LINDER, H. J. (1969). Chem. Ber. 102, 2456.

- MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J. P. & WOOLFSON, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data, Univs. of York, England, and Louvain, Belgium.
- PAULING, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell Univ. Press.
- REEL, H. & VOGEL, E. (1972). Angew. Chem. 84, 1064-1065; Angew, Chem. Int. Ed. Engl. 11, 1013-1014.
- TOYOTA, A. & NAKAJIMA, T. (1973). Bull. Chem. Soc. Jpn, 46, 2284–2287.
- Universal Crystallographic Computing System (1979). Library of Programs, edited by T. ASHIDA, Computing Center, Tohoku Univ.
- ZAHRADNIK, R. (1965). Angew. Chem. Int. Ed. Engl. 4, 1039-1040.
- ZAHRADNIK, R., MICHEL, J. & PANCIR, J. (1966). Tetrahedron, 22, 1355-1356.

Acta Cryst. (1983). C39, 1248–1253

Structures of Two N-Bridgehead C-Nucleosides: 5,7-Dimethyl-3- β -Dribofuranosyl[1,2,4]triazolo[4,3-*a*]pyrimidine, C₁₂H₁₆N₄O₄ (I), and 5,7-Dimethyl-2- β -D-ribofuranosyl[1,2,4]triazolo[1,5-*a*]pyrimidine–Methanol, C₁₂H₁₆N₄O₄.CH₄O (II)

BY BISERKA KOJIĆ-PRODIĆ AND ŽIVA RUŽIĆ-TOROŠ

'Rudjer Bošković' Institute, PO Box 1016, 41001 Zagreb, Yugoslavia

and Jože Kobe

'Boris Kidrič' Institute, PO Box 380, 61001 Ljubljana, Yugoslavia

(Received 11 November 1982; accepted 17 May 1983)

Abstract. (I): $M_r = 280.29$, monoclinic, C2, a =22.152 (6), b = 7.225 (2), c = 25.530 (5) Å, $\beta =$ $103.7(2)^{\circ}$, Z = 12, $U = 3969.02 \text{ Å}^3$, $D_r =$ 1.412 Mg m^{-3} , $\mu(\text{Cu } K\alpha) = 0.920 \text{ mm}^{-1}$, F(000) =(II): $M_r = 312.33$, 1776, room temperature. orthorhombic, $P2_12_12_1$, a = 23.318 (9), b = 10.109 (4), $c = 6.858 (2) \text{ Å}, \quad Z = 4, \quad U = 1616.58 \text{ Å}^3, \quad D_x = 1616.58$ 1.287 Mg m^{-3} , $\mu(\text{Cu } K\alpha) = 0.852 \text{ mm}^{-1}$, F(000) =664, room temperature. Final R = 0.075 for 3157 observed reflexions (I) and R = 0.064 for 1352 observed reflexions (II) $[I > 2\sigma(I)]$. There are three asymmetric units (A, B, C) in the structure of (I) with different ribose puckers: an envelope $_2E$, P =340.4° (A), twisted ${}^{2}T_{1}$, $P = 145.7^{\circ}$ (B) and ${}^{3}T_{4}$, $P = 27.7^{\circ}$ (C). In (II) the ribose appears in a twisted ${}^{2}T_{3}$, $P = 181.7^{\circ}$, conformation. Sugar conformations around C(4')-C(5') in (I) are trans, $\psi = 177.6^{\circ}$ (A), gauche⁺, $\psi = 56.3^{\circ}$ (B), $\psi = 38.0^{\circ}$ (C), and in (II) trans, $\psi = -177.6^{\circ}$. The conformation about the C-glycosyl bond is high-anti [$\chi = 109.6$ (A), 117.0 (B) and $107 \cdot 2^{\circ}$ (C)] in (I) and anti ($\chi = 72 \cdot 0^{\circ}$) in (II). The molecular packing is dominated by hydrogen bonds. A three-dimensional system of hydrogen bonds is formed sugar-sugar interactions $[O(2')-H\cdots O(3'),$ by $2 \cdot 892$ (7), $A \cdots C$; O(3')-H \cdots O(5'), $2 \cdot 814$ (7), $B \cdots A$; O(5')-H···O(2'), 2.861 (9) Å, B···B] and sugar-base $[O(3')-H\cdots N(2), 2.942(8), A\cdots C; O(5')-H\cdots N(1),$ $2.837(7), A \cdots B; 2.871(11), C \cdots A; O(2') - H \cdots N(2),$ 2.842(8), B...B; O(2')-H...N(1), 2.817(10), C...C; $O(3')-H\cdots N(8)$, 2.868 (9) Å, $C\cdots A$ in (I). In (II) there are sugar-sugar $[O(2')-H\cdots O(5'), 2.720(7);$ $O(5')-H\cdots O(3'),$ 2.695 (7) Å], sugar-solvent $[O(3')-H\cdots O(1), 2.731 (8) \text{ Å}]$, and solvent-base $[O(1)-H\cdots N(1), 2.858 (7) Å]$ interactions. Base stacking does not occur in these structures.

Introduction. Our interest within the series of Nbridgehead nucleosides (Kojić-Prodić, Ružić-Toroš, Golič, Brdar & Kobe, 1982) is further extended to $3-\beta$ -D-ribofuranosyl[1,2,4]triazolo[4,3-a]pyrimidine (I) and $2-\beta$ -D-ribofuranosyl[1,2,4]triazolo[1,5-a]pyrimidine (II), basic heterocyclic systems considered as potential analogues of the antibiotics formycin A and B (Brdar, Japelj & Kobe, 1979).

0108-2701/83/091248-06\$01.50

© 1983 International Union of Crystallography

5,7-Dimethyl-3- β -D-ribofuranosyl[1,2,4]triazolo [4,3a]pyrimidine (I) with a methyl group at position 5 and a ribofuranose moiety in a *peri* position lacks conformational flexibility about the glycosyl bond as compared to its isomer 5,7-dimethyl-2-*B*-D-ribofuranosyl[1,2,4]triazolo[1,5-*a*]pyrimidine (II) which can apparently adopt a necessary high-anti conformation (Miles, Miles & Eyring, 1978). ¹H and ¹³C NMR measurements of (I) $(R_1 = R_2 = CH_3)$ and (II) $(R_1 = R_2 = CH_3)$ in solution (NOE, ¹H and ¹³C spin-lattice-relaxation measurements) characterized (I) in a rigid high-anti conformation $(\chi = 90 \pm 20)^{\circ}$ and (II) predominantly as a flexible model in the anti conformation ($\chi = 60 \pm 30^\circ$) (Kobe & Pumpernik, 1983). The present X-ray structure determination of (I) has revealed three conformers appearing in the highanti conformation. The molecule of (II) in the crystalline state is in the anti conformation. Both compounds maintain the same type of glycosyl conformation in solution and solid state. The testing of these compounds on herpes simplex and mengovirus has shown a moderate activity of the compound (II) in both cases (Brdar, Japelj & Kobe, 1979). Compound (I) has been found to be inactive.

Experimental. Weissenberg photographs (Cu Ka radiation) determined $P2_12_12_1$ uniquely for (II) and C2 or C2/m for (I); the optically active molecule implies C2, which was confirmed by the structure analysis. Cell dimensions from diffractometer measurements [20 reflexions for (I) and 15 for (II)]. Crystals used: $0.39 \times 0.29 \times 0.34$ mm (I) and $0.09 \times 0.09 \times 0.46$ mm (II), Philips PW 1100 computer-controlled four-circle diffractometer, ω -scan mode [scan width = 0.6 (I), $1.5^{\circ} \theta$ (II), scan speed 1.8 (I), $0.05^{\circ} \theta s^{-1}$ (II)], graphite-monochromated Cu Ka radiation, 3157 (I) and 1352 (II) observed reflexions [$I > 2\sigma$ (I)] in the range $3 < \theta < 70^{\circ}$, 21 (I) and 14 (II) unobserved; three standard reflexions.

MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980) gave the solution for (II) (based on 200 reflexions having $|E| \ge 1.30$) but in an initial step failed to solve the C2 structure. More appropriate origin- and enantiomorph-fixing reflexions were selected and five reflexions were added to the starting set. Two base fragments obtained in the E map (300 reflexions with $|E| \ge 1.5$) were used in the recycling procedure. In this step 40 atoms were located. A difference Fourier synthesis revealed the remaining 20 atoms. It did not locate the positions of H(O2') (A), H(O5') (C), and the H atoms of C(10) and C(11) in the units B,C.

Full-matrix least-squares refinement minimized $\sum w(|F_o| - |F_c|)^2$, with $w = w_1w_2$ where $w_1 = 1$ for $|F_o| \le 35$ and $35/|F_o|$ for $|F_o| > 35$; $w_2 = 1$ for $\sin \theta \ge 0.40$ and $\sin \theta/0.40$ for $\sin \theta < 0.40$. For (II): $w_1 = 1$ for $|F_o| \le 15$ and $15/|F_o|$ for $|F_o| > 15$;

 $w_2 = 1$ for sin $\theta \ge 0.35$ and sin $\theta/0.35$ for sin $\theta < 0.35$. A scale factor, atomic coordinates, and anisotropic thermal parameters (539 variables) were refined for (I); H atoms included in structure-factor calculations only. For (II) a scale factor, atomic coordinates of non-H atoms and six H atoms [H(1'), H(2'), H(3'), H(4'),H(O2'), H(O3'), anisotropic parameters of non-H atoms, and isotropic ones of the refined H atoms (223 variables) were refined. The H-atom positions are of low accuracy due to the poor ratio of observations to number of variables (~ 6). Anisotropic thermal parameters are in the usual range: the maximum values are U_{22} for O(5'C) (I) [0.139 (8) Å²], U_{11} for O(5') (II) $[0.149(4) Å^2]$, and U_{11} for C(12) (methanol, II) $[0.238(15) Å^2]$. The final R = 0.075, $R_w = 0.090$ for 3157 (I) and R = 0.064, $R_w = 0.075$ for 1352 (II) observed reflexions [S = 2.50 (I), 0.96 (II); $\Delta/\sigma =$ 1.1698 (I), 0.147 (II); $\Delta \rho = -0.18 - 0.25$ (I), -0.15 - 0.250.10 (II) e Å⁻³].

Scattering factors from Cromer & Mann (1968) and (for H) Stewart, Davidson & Simpson (1965). Univac 1110 computer at the University Computing Centre in Zagreb with the XRAY system (Stewart, Machin, Dickinson, Ammon, Heck & Flack, 1976).

Discussion. Atomic coordinates and equivalent isotropic thermal parameters are listed in Table 1.*

The structural formulae with the atom numbering are given in Figs. 1 (I) and 2 (II). Interatomic distances and angles are listed in Tables 2 (I) and 3 (II). The molecular packing is illustrated in Figs. 3 (I) and 4 (II). The conformation about the C-glycosyl bond and sugar pucker are defined by torsion angles (Tables 4 and 5) and displacements from the best least-squares planes.*

Bases. 5,7-Dimethyl[1,2,4]triazolo[4,3-a]pyrimidine and 5,7-dimethyl[1,2,4]triazolo[1,5-a]pyrimidine involve a bridgehead N at position 5 (classical numbering in purines) which introduces the major difference between the title compounds and formycin. If 5,7dimethyl[1,2,4]triazolo[4,3-a]pyrimidine is compared with purine analogues, an interchange of N(9) and C(8) (purine numbering) is observed. These alterations mostly affect the electronic charge distribution and thus bond lengths and angles cannot be compared with those in formycin.

Bond distances and angles are in agreement with the given atom type, hybridization and corresponding conjugation (Tables 2,3). Their values in the base

^{*} Lists of structure factors, anisotropic thermal parameters, displacements from the best least-squares planes, hydrogen-bond distances, H-atom coordinates and bond lengths and angles involving H atoms, and torsion angles have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38591 (53 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Final atomic coordinates $(\times 10^4)$ and isotropic thermal parameters $(\times 10^2)$ for non-hydrogen atoms

Table 1 (cont.)

thermal parameters (×10 ²) for non-hydrogen atoms $x = y = z = U_{eq}(\dot{A}^2)$									
$U_{\rm eq} = \frac{1}{3} \sum_i \sum_j a^*_i a^*_j a_i \cdot a_j.$				C(5') O(5') O(1)	55 (3) 214 (2) 1041 (2)	3592 (6) 3645 (4) 1609 (4)	7235 (9) 9224 (6) 4309 (9)	5.5 (4) 8.0 (4) 8.2 (4)	
	x	У	Ζ	U_{eq} (Å ²)	C(12)	1404 (7)	457 (14)	4859 (29)	20(1)
Structure (I), units N(1A) N(2A) C(3A) N(4A)	A, B, C 335 (2) 934 (2) 918 (2) 306 (2)	5454 5431 (10) 5687 (10) 5520 (9)	7954 (2) 7885 (2) 7374 (2) 7078 (2)	5.7 (3) 5.4 (3) 3.6 (3) 3.4 (3)	Table 2.	Bond dista non-hydroge	ences (Å) en atoms, s	and angles structure (I)	(°) for
C(5A) C(6A) C(7A) N(8A) C(9A)	5(2) -627(2) -948(2) -664(2) -28(2)	5553 (11) 5408 (12) 5262 (11) 5142 (10) 5296 (12)	6532 (2) 6425 (2) 6842 (2) 7348 (2) 7471 (2)	$ \begin{array}{r} 3.7(3) \\ 4.2(4) \\ 4.1(4) \\ 4.5(3) \\ 4.4(4) \end{array} $	N(1)–N(2) N(1)–C(9) N(2)–C(3)	1-38 1-30 1-31	A 0 (8) 7 (8) 0 (9)	B 1.379 (7) 1.314 (9) 1.314 (8) 1.275 (2)	C 1·366 (12) 1·340 (11) 1·327 (11) 1·327 (12)
C(10 <i>A</i>) C(11 <i>A</i>) O(4' <i>A</i>) C(1' <i>A</i>) C(2' <i>A</i>)	364 (3) -1648 (2) 1572 (2) 1481 (2) 2070 (2)	5746 (14) 5184 (15) 4341 (7) 5937 (10) 6060 (10)	6117 (2) 6711 (3) 6841 (1) 7148 (2) 7602 (2)	5.2 (4) 5.6 (5) 3.8 (3) 3.5 (4) 3.6 (4)	C(3)=N(4) C(3)=C(1') N(4)=C(5) N(4)=C(9) C(5)=C(6)	1.39 1.50 1.39 1.39 1.39	2 (7) 2 (9) 5 (8) 1 (9) 7 (9)	1-376 (8) 1-490 (8) 1-416 (9) 1-395 (7) 1-329 (9)	1.379(10) 1.462(15) 1.413(11) 1.345(13) 1.340(14)
O(2'A) C(3'A) O(3'A) C(4'A) C(5'A)	2526 (2) 2238 (2) 2886 (1) 2025 (2) 1754 (3)	7033 (7) 4073 (10) 3724 (8) 3132 (10) 1237 (11)	7387 (1) 7711 (2) 7928 (1) 7164 (2) 7181 (2)	$\begin{array}{c} 4 \cdot 3 (3) \\ 3 \cdot 3 (3) \\ 4 \cdot 4 (3) \\ 3 \cdot 2 (3) \\ 4 \cdot 4 (4) \\ 4 \cdot 4 (4) \end{array}$	C(5)-C(10) C(6)-C(7) C(7)-N(8) C(7) C(11) N(8)-C(9) O(11)	1.47 1.41 1.29 1.50 1.37	5 (10) 7 (10) 8 (8) 8 (9) 4 (8) 7 (0)	1.508 (8) 1.429 (9) 1.321 (10) 1.534 (10) 1.335 (8)	1.462 (19) 1.407 (19) 1.332 (12) 1.521 (16) 1.372 (12) 1.450 (10)
O(5'A) N(1B) N(2B) C(3B) N(4B) C(5D)	1541 (2) 5223 (2) 4886 (2) 4293 (2) 4226 (2)	454 (8) 5545 (11) 5448 (11) 5305 (11) 5288 (9) 5206 (11)	6661 (1) 6408 (2) 5881 (2) 5874 (2) 6397 (1) 6645 (2)	$\begin{array}{c} 4.6 (3) \\ 5.0 (3) \\ 4.8 (3) \\ 3.6 (3) \\ 3.4 (3) \\ 4.0 (4) \end{array}$	O(4') = C(1') O(4') = C(4') C(1') = C(2') C(2') = O(2') C(2') = C(3') C(3') = O(3')	1.43 1.43 1.52 1.44 1.49	4 (7) 7 (8) 2 (9) 2 (10) 3 (7)	1.418 (10) 1.450 (8) 1.536 (10) 1.403 (10) 1.561 (10) 1.422 (10)	1.430(10) 1.434(11) 1.541(10) 1.416(11) 1.537(12) 1.404(10)
C(5B) C(6B) C(7B) N(8B) C(9B) C(10B)	3720 (2) 3872 (3) 4503 (3) 4977 (2) 4830 (2) 3071 (2)	5206 (11) 5123 (13) 5107 (12) 5307 (11) 5392 (11) 5371 (14)	7181 (2) 7483 (2) 7257 (2) 6719 (2) 6294 (2)	$\begin{array}{c} 4.0 (4) \\ 4.9 (4) \\ 4.6 (4) \\ 4.9 (4) \\ 4.1 (3) \\ 5.0 (4) \end{array}$	C(3')-C(4') C(4')-C(5') C(5')-O(5') N(2)-N(1)-C(5')	(9) 105-	9 (7) 90 (11) 7 (8) 9 (5)	1.527 (12) 1.497 (14) 1.416 (9) 107.6 (5)	1.521 (10) 1.497 (13) 1.424 (17) 105.3 (8)
C(11B) O(4'B) C(1'B) C(2'B) O(2'B)	4645 (4) 3508 (2) 3792 (2) 4034 (3) 4182 (2)	4828 (17) 3237 (8) 4961 (11) 4700 (11) 6406 (7)	8096 (3) 5438 (1) 5380 (2) 4868 (2) 4668 (2)	$7 \cdot 1 (5) 4 \cdot 3 (3) 3 \cdot 7 (4) 3 \cdot 9 (4) 5 \cdot 0 (3)$	$\begin{array}{c} N(1)-N(2)-C(3)\\ N(2)-C(3)-N(3)\\ N(2)-C(3)-C(3)-C(3)\\ N(4)-C(3)-C(3)-C(3)\\ C(3)-N(4)-C(3)-C(3)\\ \end{array}$	(3) 109 (4) 108 (1') 124 (1') 126 (5) 135	•0 (5) •6 (5) •7 (5) •4 (5) •4 (6)	108-9 (5) 109-0 (5) 124-3 (6) 126-1 (6) 135-5 (5)	110-1 (6) 107-7 (8) 126-5 (7) 125-8 (7) 133-3 (9)
C(3'B) O(3'B) C(4'B) C(5'B) O(5'B) N(1C) N(2C)	3467 (3) 2994 (2) 3227 (3) 3360 (3) 4006 (2) 6932 (3) 6910 (2)	3664 (13) 4938 (10) 2483 (12) 452 (14) 119 (10) 5171 (13) 3563 (10)	4507 (2) 4263 (1) 4910 (2) 4908 (3) 4992 (2) 615 (2) 891 (2)	$\begin{array}{c} 4 \cdot 6 (4) \\ 6 \cdot 1 (3) \\ 4 \cdot 4 (4) \\ 5 \cdot 7 (5) \\ 6 \cdot 2 (3) \\ 6 \cdot 4 (4) \\ 5 \cdot 1 (4) \end{array}$	C(3)-N(4)-C(C(5)-N(4)-C(N(4)-C(5)-C(N(4)-C(5)-C(C(6)-C(5)-C(C(5)-C(6)-C(C(5)-C(6)-C(C(6)-C(7)-N((9) 103 (9) 120 (6) 114 (10) 120 (10) 124 (7) 121 (8) 122	-7 (5) -9 (5) -9 (6) -6 (5) -4 (6) -9 (6) -8 (5)	105-2 (5) 119-3 (5) 115-4 (5) 118-3 (5) 126-1 (6) 122-1 (7) 122-7 (6)	105.9 (7) 120.8 (7) 115 (1) 120.6 (8) 124.3 (9) 121.6 (9) 124 (1)
N(2C) C(3C) N(4C) C(5C) C(5C) C(7C) N(8C)	6774 (3) 6690 (2) 6522 (3) 6465 (4) 6593 (4) 6768 (3)	2156 (13) 2857 (11) 2047 (16) 3234 (18) 5131 (19) 5906 (13)	549 (2) 35 (2) -482 (3) -894 (3) -809 (3) -322 (2)	$\begin{array}{c} 4.8 (5) \\ 5.4 (4) \\ 6.1 (5) \\ 6.9 (6) \\ 7.4 (6) \\ 7.2 (5) \end{array}$	C(6)-C(7)-C(7)-C(7)-C(7)-C(7)-C(7)-C(7)-C(7	(1) 120 (11) 116 (9) 116 (4) 110 (8) 126 (8) 122	·6 (6) ·5 (6) ·8 (6) ·8 (5) ·4 (6) ·5 (5)	119-2 (7) 118-0 (6) 115-5 (5) 109-2 (5) 126-1 (5) 124-7 (6)	$117 \cdot 2 (9)$ $119 (1)$ $114 (1)$ $111 \cdot 1 (8)$ $124 \cdot 1 (9)$ $124 \cdot 7 (7)$
C(9C) C(10C) C(11C) O(4'C) C(1'C)	6802 (3) 6426 (5) 6521 (6) 6048 (2) 6703 (3)	4684 (13) 49 (21) 6352 (20) -246 (12) 218 (16)	$ \begin{array}{r} -522 (2) \\ 94 (3) \\ -554 (4) \\ -1305 (3) \\ 534 (2) \\ 688 (2) \end{array} $	5.2 (5) 8.8 (7) 9.7 (7) 7.3 (4) 5.4 (5)	C(1')=O(4')=(C(1')=O(4')=(C(1')=O(4')=(C(1')=O(4')=(C(1')=O(4')=(C(1')=O(4')=(C(1')=(C(1')=O(2')=O(2')=(C(1')=(C(1')=C(2')=O(2')=(C(1')=C(2')=O(2')=(C(1')=(C(2')=O(2')=(C(1')=C(2')=(C(1')=(C(1')=(C(1')=C(1')=(C(1'))=(C(1')=(C(1')=(C(1')=(C(1')=(C(1')=(C($\begin{array}{ccc} (2') & 110 \\ (2') & 110 \\ (2') & 110 \\ (2') & 100 \\ (2') & 104 \\ (2') & 104 \\ (2') & 106 \\ (2') & 10$	-1 (4) -5 (5) -7 (5) -8 (5) -9 (5)	109.6 (5) 108.5 (6) 113.6 (5) 103.5 (6) 111.2 (6)	109.9 (5) 108.4 (7) 115.0 (7) 106.6 (7) 111.8 (7)
C(2'C) O(2'C) C(3'C) O(3'C) C(4'C) C(5'C) O(5'C)	6927 (3) 7248 (2) 6312 (3) 6354 (2) 5866 (3) 5186 (4) 5038 (3)	244 (13) 1954 (9) 343 (14) 1408 (9) 1137 (14) 762 (18) 1042 (15)	1293 (2) 1376 (2) 1470 (2) 1938 (2) 974 (2) 900 (4) 1056 (3)	4.8 (5) 5.7 (3) 5.2 (4) 5.9 (3) 5.3 (4) 8.0 (6) 11.2 (6)	$\begin{array}{c} C(1') - C(2') -$	$\begin{array}{ccc} (3') & 102 \\ (3') & 111 \\ (3') & 105 \\ (4') & 104 \\ (4') & 109 \\ (3') & 106 \\ (5') & 110 \end{array}$	-5 (5) -9 (5) -1 (6) -4 (5) -9 (5) -1 (5) -0 (5)	99:7 (3) 115:5 (5) 110:7 (7) 103:2 (5) 108:5 (6) 106:0 (6) 109:3 (6)	111.3 (7) 113.1 (6) 102.5 (6) 113.6 (8) 103.7 (7) 106.3 (7) 107.1 107.
Structure (II) N(1) C(2) N(3)	1548 (1) 1389 (2) 1813 (1)	4172 (4) 5455 (5) 6335 (4)	4666 (7) 4661 (8) 4631 (7)	4.0 (3) 3.7 (3) 4.0 (3)	C(3')–C(4')–(C(4')–C(5')–(C(5') 114 D(5') 112	•8 (6) •6 (6)	116·4 (7) 111·0 (7)	118-1 (8) 115-0 (9)
N(4) C(5) C(6) C(7) N(8) C(9) C(10)	2284 (1) 2855 (2) 3232 (2) 3044 (2) 2497 (1) 2124 (2)	5535 (4) 5905 (6) 4906 (6) 3581 (7) 3223 (4) 4235 (5) 7344 (6)	4625 (7) 4591 (9) 4575 (9) 4598 (9) 4624 (7) 4629 (8) 4588 (12)	$3 \cdot 8 (3) 4 \cdot 5 (4) 5 \cdot 0 (4) 4 \cdot 9 (4) 4 \cdot 5 (3) 4 \cdot 0 (3) 6 \cdot 3 (4)$	moieties of The base torsion at $9 \cdot 2$ (7),	of three asyn conformatingles of the $2 \cdot 3 (1 \cdot 0) (A)$	nmetric u ons are five- and); 1.9 (9	units (I) are w defined by t d six-member), 3 (1) (B);	within 3σ . the mean red rings: $1 \cdot 3$ (8),
C(10) C(11) O(4') C(1') C(2') O(2') C(2')	3472 (2) 557 (1) 779 (2) 385 (2) 367 (1)	2467 (7) 5640 (4) 5891 (6) 5140 (6) 5811 (5)	4598 (12) 6629 (5) 4714 (8) 3317 (8) 1519 (6) 4403 (8)	$\begin{array}{c} 6.6 (5) \\ 4.3 (2) \\ 3.7 (3) \\ 3.8 (3) \\ 5.2 (3) \\ 3.7 (2) \end{array}$	Deviation planes th membered	(C) and s of the ato rough the a d rings are	U.5 (6), oms from ill atoms in the	the best leas of the five- range (I): 0	in (11).* st-squares and six- 0.001 (10)
O(3') O(3') C(4')	-186(2) -498(1) 7(2)	6296 (4) 4998 (5)	4403 (8) 4190 (6) 6527 (8)	3.7 (3) 4.9 (2) 3.7 (3)		* See 0	deposition fo	ootnote.	

Table 3. Bond distances (Å) and angles (°) for
non-hydrogen atoms, structure (II)

N(1)-C(2)	1.349 (7)	N(8)-C(9)	1.342 (7)
N(1)-C(9)	1.344 (7)	O(4') - C(1')	1.434 (7)
C(2)-N(3)	1.329 (7)	O(4')-C(4')	1.440 (7)
C(2) - C(1')	1.490 (7)	C(1')-C(2')	1.530 (8)
N(3)-N(4)	1.365 (6)	C(2')-O(2')	1.408 (7)
N(4)-C(5)	1.382 (7)	C(2') - C(3')	1.528 (8)
N(4)C(9)	1.367 (7)	C(3')-O(3')	1.408 (7)
C(5)-C(6)	1.340 (9)	C(3')-C(4')	1.530 (8)
C(5)-C(10)	1.485 (9)	C(4')-C(5')	1.506 (9)
C(6)-C(7)	1.409 (10)	C(5')-O(5')	1.414 (8)
C(7)-N(8)	1.326 (7)	O(1)-C(12)	1.488 (17
C(7)-C(11)	1.505 (10)		
C(0) $N(1)$ $C(2)$	102.2 (1)		127 6 15
U(9) = N(1) = U(2)	103.2 (4)	N(1) = C(9) = N(8)	127.0 (5
N(1) = C(2) = N(3) N(1) = C(2) = C(11)	116.0 (4)	N(4) = U(9) = N(8)	123.8 (5
N(1) = C(2) = C(1')	$123 \cdot 2(3)$	$C(1) = O(4^{\circ}) = C(4^{\circ})$	110.9 (4
N(3) = U(2) = U(1)	120.7(3)	C(2) = C(1) = O(4')	108.3 (4
V(2) = N(3) = N(4) N(2) = N(4) = C(5)	101.7 (4)	C(2) = C(1) = C(2)	114.3 (3
N(3) - N(4) - C(3)	128.0 (3)	$O(4^{-}) = O(1^{-}) = O(2^{-})$	103.0 (4
N(3) - N(4) - C(9)	110.4 (4)	C(1) = C(2) = O(2)	109.1 (5
C(3) = N(4) = C(9)	121.0(5)	C(1) = C(2) = C(3)	103-2 (4
N(4) = C(3) = C(0)	113.4 (5)	$O(2^{2}) = C(2^{2}) = C(3^{2})$	114.2 (4
N(4) = C(5) = C(10)	117.4 (5)	C(2) = C(3) = O(3)	112.5 (5
C(0) - C(3) - C(10)	127.2 (5)	$C(2^{\prime}) = C(3^{\prime}) = C(4^{\prime})$	102.0 (4
C(5) - C(6) - C(7)	120.7 (5)	O(3') = C(3') = C(4')	108-3 (5
C(0) - C(7) - N(8)	124.0 (6)	$O(4^{-}) - C(4^{-}) - C(3^{-})$	106-0 (4
C(0) - C(7) - C(11)	120.3 (5)	U(4') - U(4') - U(5')	110.0 (5
N(8) - C(7) - C(11)	115.7 (6)	C(3') - C(4') - C(5')	113-5 (5
C(7) = N(8) = C(9)	1:4.5 (5)	U(4') = U(5') = U(5')	107-1 (5
N(1) - C(9) - N(4)	108-6 (5)		

Table 4. Torsion angles (°) involving the glycosyl bondand ribose moiety, structure (I)

Greek letters correspond to Sundaralingam's (1969) notation.

		A	В	С
χ	O(4')-C(1')-C(3)-N(2)	109-6 (7)	117.0 (8)	107-2 (8)
το	C(4')-O(4')-C(1')-C(2')	21.7 (7)	-34.5 (6)	-6(1)
τ	O(4')-C(1')-C(2')-C(3')	-33.6 (7)	42.0 (6)	-18(1)
τ2	C(1')-C(2')-C(3')-C(4')	32.6 (7)	-34.4 (7)	34.3 (9)
τ,	C(2')-C(3')-C(4')-O(4')	-20.5(7)	15.7 (8)	-39.0 (9)
τ4	C(3')-C(4')-O(4')-C(1')	-1.0(7)	11.5 (7)	28 (1)
	O(2')-C(2')-C(3')-O(3')	38.9 (7)	-37.6 (9)	37.7 (9)
	O(5')-C(5')-C(4')-O(4')	58.0 (8)	-63.6 (8)	-78 (1)
Ψ	O(5')-C(5')-C(4')-C(3')	177.6 (5)	56-3 (8)	38 (1)

Table 5. Torsion angles (°) involving the glycosyl bond and ribose moiety, structure (II)

O(4')-C(1')-C(2)-N(3)	-107.1 (6)	C(3')-C(4')-O(4')-C(1')	-12.2(6)
C(4') - O(4') - C(1') - C(2')	-10.1 (6)	O(2') - C(2') - C(3') - O(3')	-37.0 (7)
O(4')-C(1')-C(2')-C(3')	28.3 (6)	O(5')-C(5')-C(4')-O(4')	63.7 (7)
C(1')-C(2')-C(3')-C(4')	-34.5 (5)	O(5')-C(5')-C(4')-C(3')	-177.6 (5)
C(2')-C(3')-C(4')-O(4')	29.2 (6)		

Fig. 1. Structural formula of (I) and atom numbering.

Fig. 2. Structural formula of (II) and atom numbering.

Fig. 3. Molecular packing of (1) along **b**. The system of threedimensional hydrogen bonds between sugar-sugar and sugarbase moieties is marked by dotted lines. For clarity, only the H atoms involved in hydrogen bonds are shown. The positions of H(O2') (A) and H(O5') (C) were not determined. The positive direction of **b** is away from the viewer.

Fig. 4. A view of the crystal structure of (II) along **c** showing hydrogen bonds (dotted lines). Only the H atoms involved in hydrogen bonds are shown.

[C(6)]-0.081(11) [N(1)](A); 0.003(9) [N(8)]-0.058(10) [C(7)] (B); 0.012(10)[C(5)]-0.033(10)[C(6)] (C), and (II): 0.000(6) [C(2), N(8)]-0.004 (6) Å [N(4), C(9)].* The base of (I) A deviates considerably from planarity; the puckering of the five-membered ring at the N(1), N(2), C(3) side is obvious (Table 4). The departures of N(1) [0.081 (11)] and N(2) [-0.067 (11) Å] from the best least-squares plane in (I) A are considerably larger than in (I) B [0.049(9),-0·026 (9)] and C = [-0.020(11)],-0.027 (7) Å]. N(1), N(2) [and N(8)] are available as proton-acceptor sites for hydrogen bonds. All available sites are involved in hydrogen bonding but N(2) of (I) A does not exhibit any intermolecular contact less than 3.5 Å. The existing hydrogen-bonding system may cause the puckering of the triazole ring in molecule A.

Ribose moieties. Interatomic distances in the ribose residues of the three units A,B,C in (I) and in those in (II) are within 4σ (Tables 2,3). Bond angles are influenced by the mode of puckering (or conformation) more than bond distances. Four different ribose conformations appear in these structures and thus the bond angles are more scattered than the bond lengths. The shortening of the endocyclic bond length C(1')-O(4') relative to the normal C-O single bond (1.428 Å, Sundaralingam, 1969), common for Nglycosyl derivatives, is not observed; the smallest value is in (I) B, 1.418 (10) Å, but the difference from the single C–O bond is within 3σ . The asymmetry in C(1')–O(4') and C(4')–O(4') is not pronounced; the differences between these two bonds in all molecules are within 3σ . Bond angles C(1')-O(4')-C(4') are close to 109.9° [(I): 110.1 (4) (A), 109.6 (5) (B), 109.9 (5) (C); (II): 110.9 (4)°]. The endocyclic O(4')-C(1')-C(2') in (I) B is 103.5 (6)° which is smaller than in (I) A and C and in (II). In formycin (Prusiner, Brennan & Sundaralingam, 1973) the value 103.4 (3)° has been observed. In (I)B and formycin the ribose is in the ${}^{2}T_{1}$ conformation.

The puckering of the ribose moiety is described by means of the torsional angles $\tau_0 - \tau_4$ (Tables 4,5) and a pseudorotation angle *P* (Altona & Sundaralingam, 1972). Both general modes of puckering, C(3')-endo and C(2')-endo, occur in these structures. The C(2')-exo, envelope $_2E$, appearing in (I)*A* is a variant of C(3')-endo (Sundaralingam, 1975b). The C(3')-endo-C(4')-exo, ${}^{3}T_4$, is observed in (I)*C*. The C(2')-endo mode of puckering occurs in (I)*B* [C(2')-endo-C(1')-exo, ${}^{2}T_1$] and in (II) [C(2')-endo-C(3')-exo, ${}^{2}T_3$]. The values of the pseudorotation angle *P* are given in the *Abstract*.

The conformation about the exocyclic bond C(4')-C(5') is defined by the value of the torsion angle ψ along C(3')-C(4')-C(5')-O(5') (Sundaralingam, 1969; 1975a). The conformation gauche⁺ is observed

in (I)B ($\psi = 56.5$) and C ($\psi = 38.0^{\circ}$). The *trans* conformation is found in (I)A ($\psi = 177.6$) and in (II) ($\psi = -177.6^{\circ}$).

The glycosyl bond and molecular packing. The title nucleosides possess a C-glycosyl bond with the values (I): 1.502(9)(A), 1.490(8)(B), 1.462(15)(C), and (II): 1.490(7) Å. These values are in the range found in formycin derivatives: formycin A, 1.501(5) (Prusiner, Brennan & Sundaralingam, 1973), formycin A.H⁺, 1.492(17) (Koyama, Umezawa & Iitaka, 1974), formycin B, 1.493(4), oxoformycin B, 1.501(6) (Koyama, Nakamura, Umezawa & Iitaka, 1976), 8-methylformycin, 1.494(2) (Abola, Sims, Abraham, Lewis & Townsend, 1974). The shortening of the C–C glycosyl bond is observed in 8-aza-9-deazapurine nucleosides but also in C–N bonds of other nucleosides containing N in the *ortho* position to the glycosyl bond (Singh & Hodgson, 1977a).

The orientation of the base relative to the sugar ring, described in terms of rotation about the C(1')-C(3)bond glycosyl for the sequence O(4')-C(1')-C(3)-N(2), in (I) is high-anti [109.6 (7) $117.0(8)(B), 107.2(8)^{\circ}(C)$ (A),(Sundaralingam, 1969, 1975a,b). In (II) the conformation about the C(1')-C(2) glycosyl bond, defined by the torsion angle $O(4')-C(1')-C(2)-N(1) = 72.0(7)^{\circ}$, is anti. The nucleosides involving a C-glycosyl bond mostly prefer the syn conformation (Sundaralingam, 1975*a*,*b*). The χ angles in oxoformycin B (-164.1) (Koyama, Nakamura, Umezawa & Iitaka, 1976), formycin hydrobromide monohydrate (-149.3)(Koyama, Umezawa & Iitaka, 1974), and formycin B hydrochloride $(-140 \cdot 1^{\circ})$ (Singh & Hodgson, 1977b) are in the syn range. The molecules of formycin monohydrate ($\chi = 109.8$) (Prusiner, Brennan & Sundaralingam, 1973) and 8-azaadenosine ($\chi = 103.7^{\circ}$) (Singh & Hodgson, 1977a) adopt the high-anti conformation. Of all the formycin derivatives, only formycin B is in the *anti* conformation ($\chi = 30.4^{\circ}$) (Koyama, Nakamura, Umezawa & Iitaka, 1976). The 8-azapurines are mostly characterized by higher anti glycosyl angles (Sundaralingam, 1975a) in which the repulsion between the base and the 5'-hydroxyl oxygen is alleviated. The methyl group at position 5 and the ribofuranose moiety in a *peri* position considerably reduce the flexibility about the glycosyl bond. The high-anti conformation is maintained in solution (Kobe & Pumpernik, 1983) and the solid state. Probably hydrogen bonds do not affect the conformation about the glycosyl bond. (II) is more flexible and adopts the more common anti conformation.

The crystal packing is realized through threedimensional hydrogen bonds (Figs. 3,4). Sugar-sugar interactions occur in both structures and are detailed in the *Abstract*. Sugar-base interactions occur in (I) only and in (II) both the base and the sugar are involved in hydrogen bonds, to the solvent (see *Abstract*). In both

^{*} See deposition footnote.

bases only the acceptor sites for protons are available. Thus, base-base interaction is not possible. In (I) *B* and *C*, N(1) and N(2), but not N(8), are involved in hydrogen bondes. However, in (I)*A*, N(1) and N(8) are hydrogen bonded whereas N(2) is free and does not make any contact < 3.50 Å. The ring O(4') atom of the ribose is not involved in a hydrogen bond. Base stacking does not occur in these structures.

The authors thank MSc M. Bruvo for collecting the intensities at the Department of General and Inorganic Chemistry, Faculty of Science, University of Zagreb.

References

- Abola, J. E., Sims, M. J., Abraham, D. J., Lewis, A. F. & Townsend, L. B. (1974). J. Med. Chem. 17, 62–65.
- Altona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205-8212.
- BRDAR, B., JAPELJ, M. & KOBE, J. (1979). Biochem. Pharmacol. 28, 1686-1688.

CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A 24, 321-324.

- KOBE, J. & PUMPERNIK, D. (1983). To be published.
- KOJIĆ-PRODIĆ, B., RUŽIĆ-TOROŠ, Ž., GOLIČ, L., BRDAR, B. & KOBE, J. (1982). Biochim. Biophys. Acta, 698, 105–110.

- KOYAMA, G. NAKAMURA, H., UMEZAWA, H. & IITAKA, Y. (1976). Acta Cryst. B32, 813-820.
- KOYAMA, G., UMEZAWA, H. & IITAKA, Y. (1974). Acta Cryst. B30, 1511–1516.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- MILES, D. L., MILES, D. W. & EYRING, H. (1978). Biochim. Biophys. Acta, 518, 17-30.
- PRUSINER, P., BRENNAN, T. & SUNDARALINGAM, M. (1973). Biochemistry, 12, 1196-1202.
- SINGH, P. & HODGSON, D. J. (1977a). J. Am. Chem. Soc. 99, 4807–4815.
- SINGH, P. & HODGSON, D. J. (1977b). Acta Cryst. B33, 3189-3194.
- STEWART, J. M., MACHIN, P. A., DICKINSON, C. W., AMMON, H. L., HECK, H. & FLACK, H. (1976). The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- SUNDARALINGAM, M. (1969). Biopolymers, 7, 821-860.
- SUNDARALINGAM, M. (1975a). Ann. N. Y. Acad. Sci. 255, 3-42.
- SUNDARALINGAM, M. (1975b). Principles Governing Nucleic Acid and Polynucleotide Conformations in Structure and Conformation of Nucleic Acids and Protein-Nucleic Acid Interactions, edited by M. SUNDARALINGAM & T. S. RAO, pp. 487-519. Baltimore: University Park Press.

Acta Cryst. (1983). C39, 1253-1255

(E)-3-Hexenedinitrile, $C_6H_6N_2$

By W. B. Gleason* and Doyle Britton

Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA

(Received 30 March 1983; accepted 17 May 1983)

Abstract. $M_r = 106 \cdot 13$, $P2_1/c$, a = 4.033 (2), b = 14.201 (8), c = 5.331 (6) Å, $\beta = 103.04$ (6)°, V = 297.4 Å³, Z = 2, $D_x = 1.185$ g cm⁻³. Mo Ka radiation, $\lambda = 0.7107$ Å, $\mu = 0.82$ cm⁻¹, F(000) = 112, T = 296 (2) K, R = 0.079 for 524 reflections. The molecule lies on a center of symmetry; it is close to planar with the cyano groups eclipsing the double bond. Bond lengths and angles are normal. The short contacts in the packing are from the nitrogen atom to the cyano carbon atom, 3.38 (1) and 3.65 (1) Å, and from the nitrogen atom to the packing of other nitriles.

Introduction. As part of a study of Lewis-acid-Lewis-base interactions in the solid state we have determined the structure of the title compound. This

0108-2701/83/091253-03\$01.50

structure is the third in a series where we are examining the environment of the nitrile group attached to otherwise aliphatic hydrocarbons. See also Britton & Gleason (1982–fumaronitrile) and Gleason & Britton (1982–tetramethylsuccinonitrile).

Experimental. Sample obtained from the organic chemical collection of the Department of Chemistry of the University of Minnesota, recrystallized from ethanol, crystal roughly equant, $0.2 \times 0.3 \times 0.3$ mm, lattice parameters determined from accurate measurement of positions of eight reflections with $10 < \theta < 18^{\circ}$, Hilger & Watts four-circle automatic diffractometer, systematic absences $0k0 \ k = 2n + 1$, $h0l \ l = 2n + 1$, no absorption corrections, one quadrant of data, $0 < \theta < 26^{\circ}$, h0-4, k0-18, l-6-6, 569 independent reflections, measured every 25 data measurements, showed no significant variation with time; trial structure found

© 1983 International Union of Crystallography

^{*} Present address: Central Research Laboratory, 3M Co., St Paul, MN 55144, USA.